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A new realisation of dynamical groups and 
factorisation met hod 
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11 Dipartimento di Fisica, Universiti degli Studi di Trento, 38050 Povo di Trento, Italy 
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Abstract. A new method of algebraisation of quantum mechanical eigenvalue equations 
is presented. In this method the dynamical algebra is represented on the space of group 
matrix elements. The ladder operators of the dynamical algebra are obtained from Infeld- 
Hull-Miller factorisations. The method is used to study the first Poschl-Teller equation 
even in the non-symmetric case. The energy spectrum and the exact normalised solutions 
are obtained in agreement with the results of non-algebraic methods. 

1. On different algebraisation methods 

It is known that the matrix element of a representation of the rotation group, Dkn( 8, 4 ) ,  
plays a double role in quantum mechanics. It can represent a wavefunction, and thus 
a state, namely a rotational state of angular momentum J and with angular momentum 
components m and n along the space-fixed and body-fixed axes. It can also represent 
a transformation of a state into another state, and thus the matrix element of an 
observable. The identification of states with rotations can be understood if we think 
that all states of a rotator are obtained from some reference state by all possible 
rotations. In this work, we generalise this idea so that wavefunctions are in fact 
identified with the matrix elements of group elements in some representation. The 
differential operators of the wave equation act in the space of these matrix elements 
V:>,,(g), where g c  G, Vs(g)  is its representation and V L ,  are the matrix elements of 
V(g)  in the representation S with respect to a basis of states {n}. The observables, 
being elements of the Lie algebra of G or its enveloping algebra, act on V;,"(g) so 
that the Lie algebra is itself represented on the space of matrix elements of G. 

By now Lie algebraic methods are commonly used to algebraise the wave equation 
or Hamiltonian representing a physical system (Barut 1972, Wybourne 1974). (For 
more recent examples see Arima and Iachello (1979), Jackiw (1980) and Frank and 
Wolf (1984).) There exist primarily two methods of algebraisation. In the first method, 
dating back to Casimir (1931a, b), the physical equation is expressed in terms of 
Casimir products of the operators which close under a Lie algebra. For one-dimensional 
problems which require a Lie algebra of rank one the corresponding bound state, 
scattering state and zero-energy solutions are respectively obtained by using unitary 
representations of S0(3 ) ,  SO(2, 1) and E(2). 
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The second method is very suitable for three-dimensional problems (Barut 1967, 
Fronsdal 1967, Nambu 1967). In this BFN method the physical equation is expressed 
as a linear form on the Lie algebra, e.g. [( l  - E ) r o + ( l  + E)T,+ c ] ) + )  =0,  where c is 
a constant and where To = L,,, r4 = Lq6 and another operator S = L,, form an SO(2, 1) 
subalgebra of S0(4,2).  The dynamical symmetry of the physical system is provided 
by the subgroup S0(3 )0S0(2 ,1 )  = S0(4,2).  The diagonalisation of the operators To, 
r4 and To + r4 gives, respectively, the corresponding bound states, scattering states and 
zero-energy solutions. In a most degenerate unitary representation of S0(4,2) it can 
be easily seen that the operators To, r4 and ro+ r4 are respectively given by the square 
root of the quadratic Casimir products of the algebras of the subgroups S0(4),  SO(3, l )  
and E(3) and the local isomorphisms such as S0(4 ) -S0(3 )0S0(3 )  enable us to 
express the fourth-order linear differential equations of these quadratic forms as perfect 
squares of second-order linear differential equations. In this sense the BFN method is 
a unified generalisation of the earlier method due to Casimir. The lesson we learn 
from both methods is that for algebraisation the physical equations are expressed in 
terms of the invariant elements in the universal enveloping algebra of a Lie algebra 
or a Lie subalgebra. 

The two methods mentioned above are generally successful to algebraise physical 
equations which are Kummerian and have scalar- or vector-valued solutions mostly 
expressible in terms of confluent hypergeometric functions of one variable. The 
physical actions corresponding to such problems seem to be generally path integrable 
(Coish 1956). However, for complex composite systems such as diatomic or polyatomic 
molecules there are several physical equations, e.g., Poschl-Teller equations, which 
are ’F ,  hypergeometric functions of one variable. Such physical equations can be 
algebraised (Frank and Wolf 1984) using the methods mentioned above for special 
cases by invoking certain symmetries such that the Gaussian form degenerates into a 
Kummerian form or into a simple Gaussian form with two parameters and the solutions 
correspond to a column or a row vector of general matrix-valued solutions. In this 
paper we propose a method to algebraise the general Gaussian type physical equations. 

We use Infeld-Hull factorisations and their algebraic versions given by Miller 
(1964, 1968) and express the physical equations in terms of products of ‘ladder’ 
operators of certain group matrix elements (Biedenharn and Louck 1981, Miller 1964, 
1968, Schneider and Wilson 1979). The ladder operators of basis functions have already 
been used (Schrodinger 1940, 1941a, b, Coish 1956, Hadinger er a1 1974) within the 
scope of the two methods mentioned earlier. However, the method we propose here 
requires the ladder operators of group matrix elements. In this paper we demonstrate 
this new method for the first Poschl-Teller equation involving trigonometric angles. 
The discussion of the second Poschl-Teller equation and of the Morse-Rosen equation 
both involving hyperbolic angles and unitary representations of SO(2, 1) is presented 
in the following paper (Barut et a1 1987b). 

2. Lie algebra action on group matrix elements 

The first Poschl-Teller equation is 

K , h > l  r E [0 ,  .rr/2a] a = parameter. 
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The equation remains unchanged under K + - K  + 1 and A + -A + 1 and its exact 
normalised solution has been obtained using analytic methods (Nieto 1978) for the 
symmetric case K = A and using coherent state formulation (Nieto et a1 1981). Under 
a change of parameters, K = m + g + i ,  A = m - g + 5 ,  P = 2ar, equation (1) becomes 

1 ( m  + g ++)( m + g - 5 )  

A =  M E / 2 a 2 h 2  

( m  - g + f ) (  m - g -$) 
( 2 )  

+ [ $-i( sin2 p / 2  cos2 p / 2  

P E [ O ,  771. 

There are two quantum numbers, m and g, in this equation. Following an Infeld-Hull- 
Miller factorisation (Coulson and Joseph 1967, Joseph 1967) of type A we define 

P, 2 ( aap 2 

( a i  2 P, 2 

L;+,=exp(ia) - -++(m+g++)cot - -+(m-g+f) tan-  P +, 

1 2 1/2 = [ A - ( ~ + I )  1 
P L,+, = exp( -ia) -++( m + g - 5 )  cot - -+( m - g - 5 )  tan - +, (3) 

1 2 1/2 = [ A - ( m - , )  1 4,-1 

~ 3 , + ,  = -i(a/aa)$, = m+, 

where we have introduced a new angle a E [0,27r). The operators L: and L3, form 
an SO(3) algebra satisfying the relations 

[LL, L,] = 2 L i  

CA, = ( L L L ,  + L3,L3, - L3,)+, = (L,L”, + L3,L3, + L3,)+, 

C , * , = ( ’ ~ - ~ ) + , ~ l ( 1 + 1 ) * , .  

[LC,  L3,] = F L Z .  

The action of the Casimir product 

turns out to be simply 

if we denote the eigenvalues of C, by I (  I + 1 )  we obtain 

A = 

Hence 

where we have set I = m + n and n is an integer between 0 and 21. The energy spectrum 
(4) is precisely the well known spectrum first obtained by Poschl and Teller. Equation 
( 2 )  can be written in the algebraic form 

( 5 )  [ c, - I (  I + 1 ) 3 +, = 0. 

Setting 

(6) L; = L; * iLZ, 
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we obtain the SO(3) generators 

a a . c o s a  a i 
aa a p  s i n p  a r  2 

a a sin a a i 
a a  a p  s inp  a r  2 

L k = - i c o s a  cotp--isina--1--+-sinacotp 

LZ, = -i sin LY cot p-+i cos a--i- --- cos a cot p 
( 7 )  

[ L L ,  LL] = iLk i, j ,  k cyclic. 

So far the g dependence of $ has not been considered. Equation ( 2 )  can also be 
obtained from (1) by interchanging m and g such that K = g + m + i, A = g - m +$. 
Again by factorisation of type A we define 

P 
2 L;$, = -exp(-iy) + m - 4 )  cot - - i (g - m - 4 )  tan 

where we have again introduced a new variable y E [0,257). The operators L,’ and Li 
form an SO(3) algebra satisfying the relations 

[ L ; ,  L; ]  = 2L; 

C,$, = (LgfLi + L;L; - L i ) $ ,  = (L,Lgf + L;L; + L3g)$, 

[ L ; ,  L3,] = + L ; .  

The Casimir operator is now 

which has the same eigenvalues as C,, equation ( 5 ) ,  

C,i,hg = ( A  -:)$, I( 1 + l)$, 

with 

A = ( 1  + 4)’ l = g + n  n E N .  

Hence again 

a 2 h 2  
2 M  

E,  = - ( K  + A  + 2 n ) ’  

Thus (2) can be written as the alternate algebraic form 

[C, - /(I+ l)]$, = 0. 

(9) 

(10) 
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We define L: = Li T i Li and obtain the corresponding generators 

cosy  a a a i  
s inp  aa ap ay 2 

Li=i--+isin y-+icos ycotp- - -co tps in  y 

sin y a a i  
s in@ a a  ay 2 

L:=-i--+icos ycotp- - -co tp  cos y 

( 1 1 )  

[ L$, L J ~ ]  = -iLi i, j ,  k cyclic. 

The negative sign associated with the commutation relations is due to the definition 
of L,’ and was first noticed by Casimir. In fact our L$ and L i  are similar to Casimir’s 
Q and P operators, respectively. From (7) and ( 1 1 )  we conclude that 

[ L i ,  Li] = o  

j 

i, j = 1 , 2 , 3  

L i = C  Rji(a, P, Y ) L ~  

where 

-s inp 0 -cosp 

Thus the solutions to (1) turn out to be the eigenfunctions satisfying 

cm+ = cg+ = I (  1 + 1)+ 

LL+= m+ (13) 

L3,+ = g*. 

+ = ~ X P (  -ima 1 exp(-igy) J / m , g ( P )  

Physically, L, is the angular momentum vector referred to the space-fixed frame while 
Lg is the angular momentum vector referred to the body-fixed frame of a rigid body 
(e.g. a diatomic molecule) with its centre of mass fixed in space. 

From (3) and (8) we obtain the following recurrence relations (by putting a = O  
( y = 0 )  and by adding L+ and L-): 

m + g  cos P ( sin . ,B ) + m , g ( P )  
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The crucial observation is now to compare (14) with the recurrence relations for Wigner 
functions given by (Biedenharn and Louck 1981, Schneider and Wilson 1979) 

= i[(l-  m')( I +  m'+ l)]1/2d!,,+l,m( e)  + t [ ( l +  m ' ) ( l -  m'+ 111 1 / 2  d I m~-l ,m(0)  

M I -  m cos 0 
sin f3 ) d i , , m (  e)  

(15) 
= -i[(l- m ) ( / +  m + ~ ) ] " ~ d ! , , , ~ + ~ ( e )  - t [ ( l +  m ) ( l -  m +  I ) ]  1/2 d m , , m - l ( e )  I 

-dit,,,( a e) = f [ ( l -  m ' ) ( l +  m'+ l)]1'2d!,,,+l,m( 0 )  - f [ ( l +  m ' ) ( l -  m'+ l ) ]  I / 2  dm,-l,m( I  e )  ae 
= - ; [ ( I -  m ) ( l +  m + l)]1'2d!,,,m+l( e ) + i [ ( l +  m ) ( l -  m + l ) ]  1 / 2  d m . , m - l ( e )  I  

which gives us immediately the exact normalised solutions 

with the property 
r T  

Furthermore the solutions obtained above satisfy the correct boundary conditions on 
the infinite walls of the potential 'hole': ,,&(O) = ,,&,(a) = 0. 

In order to express the solutions in a more explicit form we use the following 
relations: 

di,, ,(e) = (-l)""-"'d!,,,,,~(O) dk.,,(.rr - e)  = (--i)m'-ld!,,p,-m(e) 
l + m '  

di , ,m(e)=[(  I - m '  l + m  (-tanfe)"'-"(cos 3 ~ ) ~ "  

with 

Finally we obtain the solution in terms of the original parameters r, K ,  A ( p  = 2ar, 
m=f(K+A-l ) ,  g = f ( K - A ) ,  / = f ( K + h - 1 + 2 n )  as 

x (sin ( Y ~ ) ~ ( c o s  ~xr)'~F,[-n, K + A  + n; K ++; sin2 ar]  

n ! ( K  + A + n - I ) !  1 = (-1) n + K - 1 / 2  [ 2 a ( ~  + A  +2n)  
(K+n- f ) ! (A+n- f ) !  

x (sin ar)"(cos ar)AP:-"2-A-"2 (1  - 2 sin2 ar ) .  
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The term J 2 a  enters through the normalisation with respect to r. The final solution 
obtained above agrees exactly with the results of Nieto (1978). 

Note that the Euler angles ( a ,  p, y )  are related to the spherical polar coordinates 
as follows: 

sin o cos 4 sin w = sin & sin t ( y  - a )  

sin 8 sin 6 sin w = sin $ cos t (  y - a )  

cos 0 sin w = cos i p  sin $( y + a )  

cos 0 =cos cos $ ( y + a ) .  

For a sphere of unit radius we have 

cos p = cos 20 sin p = sin 28. (20) 

In the special symmetric case K = A, we have g = 0 in (16) and in (18) we have the limit 

'F1( -n, K + A + n ;  K +;; sin' a r )  + - C:(I -2 sin' a r )  
n !  

(2K)* 

3. On the quantisation of coupling constants 

The two Lie algebras we found, {L,,,} and {L,} forming an SU(2)xSU(2)  with a 
common Casimir operator, go beyond the spectrum-generating algebra of our starting 
problems (1). This is not the dynamical Lie algebra whose single representation gives 
all the energy states of the system. Rather we have a family of systems with quantised 
coupling constants K and A ,  as some kind of periodic table, and an SU(2) x SU(2) 
representation contains states of the same energy E from different systems in the 
family. In order to describe different energy levels we have to take a direct sum of 
representations of SU(2) x SU(2), thus going to the larger dynamical group S0(4 ,2) ,  
which contains operators changing the energy, or what we called the 1 quantum number 
of the algebras (3) or (8). Nevertheless, the algebra SU(2) x SU(2) allows us to find 
the spectrum and eigenfunctions of our problem. This sort of coupling constant 
quantisation appears in a number of other problems, such as the Kepler problem in 
a curved space (Barut and Wilson 1985) and Morse oscillator (Barut et a1 1987a) and 
will be discussed again in the non-compact case in the following paper (Barut et a1 
1987b). 
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